697 ARCHITECTURE OF MRNS SINULATION: DISTRIBUTING PROCESSES 1/1
(U) MARYVLAND UNIY COLLEGE PARK SYSTENMS EESERDCN CENTER

vV SINHA 81 JAN 87 AFOSR-TR-87-1436 AFOSR-87-080
UNCLRSSIFIED F/G 1276

[~
o

o
IFEFEEER
ERE

i

E

=
s I
(&) N

e
lee
T

P
-~ .
m——
——
—
.
—
Fr
r
re

o MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. N .o >)
| : I YIS T S . n, h. i I.‘ AU R SV
"2 v, P S T N A I L P T Y 5'0 feth gt gte g ety l' "" g
T » ‘A'n ! KW ., .,’ ., o "!‘.;i o ‘,6'..f Wy ..o'. ot ',) ip 3 ¢ L [‘. .‘|'a,b . “ i‘ _c, -., . ‘. et
) : >!.

e
Yy hu*"o sgd gt
.'c .'l» " ‘ﬂ "L‘ ‘0' '*'t " “‘

Ve e w

W .

- -

"

”_

RN &

AD-A189 697

\

" DISTRIBUTION STA'

oMt FILE COBY

AFOSR . Tk.

Architecture of MRMS Simulation:
Distributing Processes

6?7~ 4454

Velu Sinha * DTI C

Systems Research Center ELECTE

The University of Maryland

College Park, MD 20742 _NOV 1 6 1987

January 1, 1987

Abstract

As described in (3], the Mobile Remote Manipulator System Simulator
is based on an interconhected network of heterogenous computers. The
simulation is divided into modules which run concurrently on multiple
computers. Modules are designed so that they perform a specific task
which can be used in a variety of simulations. As each of these modules is
built, it is necessary to provide a method for intermachine / intermodule
communication. This paper describes various methods which can be used
for this type of communication, and also describes various standard data
formats which are used to get data from module to module in the MRMS
Simulator.

1 Construction of Modules

A module can be built out of any algorithm which has a well defined input data
stream and output data stream. The location of the module is dependent on
the algorithm: e.g. for mathematically complex tasks, a computer with a FPU
makes an ideal host, while for a graphically intense task, a workstation with
graphics primitives is the host of choice.

To convert an algorithm into a module it is necessary to do the following:
1. Decide on a standard data format for input and output streams *.

2. Add stream based i/o.

*This work was supported in part by NSF Grant #85-00108, AFOSR-UR!I Grant #AFOSR-
87-0078, and by s Design Project Grant from NASA through the Universities Space Research
Associstion.

1Standard dats formats are discussed in the Appendix.

v Romeored for public release: ‘ 8 7 l (j .

o sdaton Talimiter

LN

N ,.“‘Q".I"a,'_ IO OMNOLKIA) ‘i, RO ,..D
" Y N . NI W)

H

¥ R A LA

l‘.’)..‘. . "

l"l'
s A 3

s

SECURITY ELA§§I4CAT£N OF THIS PAGE ™

WEFUEREY Y

-

* REPORT DOCUMENTATION PAGE

Fom; Approved
OMB No. 0704-0188

1a. REPORT SE(

W CLASSIFICATION

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

distributionunlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

OGRS TR S AEPORTINUNIEER)

6b. OFFICE SYMBOL
(If applicable)

6a. NAME OF PERFORMING ORGANIZATION

7a. NAME OF MONITORING ORGANIZATION

|| 6¢c. ADDRESS (City, State, and ZIP Code)

7b. ADDRESS (City, State, and ZIP Code)

8b. OFFICE SYMBOL
(if applicable)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

AFOSR-§ 7-0G13

8c. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

TASK WORK UNIT
NO. ACCESSION NO.

11. TITLE (Include Security Classification)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED

FROM T0

14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

O uncLassiFieounLimiteo (3 SAME AS RPT. [J oTic USERS

21. ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

DD Form 1473, JUN 86

Previous editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE ﬂ

3. Add network interface for streams.
4. Add exception handling into stream based system.

Once these steps are complete, the module can be integrated into the simulation
system. One factor which should not be overlooked when building a system
of this sort is how and where a set of modules which run a simulation are
started, and how they give their output. In the MRMS case this was quite well
defined, the simulation was started from the Iris 2400 workstation, the results
were shown on the Iris 2400 workstation, and the simulation parameters were
controlled from the workstation. Such a circular arrangement is possible as the
Iris is serving two distinct functions in the simulation: It is acting as both the
control panel for the MRMS system, as well as the MRMS itself.

2 Structure of the Algorithm

As mentioned above, it is necessary to add four basic steps to turn an algo-
rithm into a module. However, these steps can be more easily added to some
algorithms than others. It is easier to convert an algorithm into a module if the
following guidelines are followed while implementing the algorithm:

e Write the algorithm so that it expects input and output from data streams.
Do not query the “user” for input in the module, use a well defined and
compact input/output format, preferably conforming to one of the stan-
dards in the appendix. Allow for stdin and stdout to be specified as the
input/output source.

e Write the algorithm with a *forever” loop, which allows for the function
of the algorithm to be called over and over again. Allow for the algorithm
to terminate elegantly upon the proper termination sequence.

e Provide a mechanism to reset the algorithm in mid-input. This should
return the algorithm to a pristine state so that a dataset with higher
priority can be processed. Also allow the various parameters (constants)
which the algorithm uses to be modified using an appropriate command
sequence.

o Use the C programming language wherever possible. This will allow the

algorithm to be moved from machine to machine most easily. If you aregession For
using a Lisp Machine, please refer to [2] for more information. (S ORAEL {J
If the above guidelines are followed the task of converting the algorithm into alC TAB -

module will be simplified. announced a
In order to assist users in preparing modules, a sample module written in C5tiflcation .
is given in the appendix. |

By
Distribution/

2 Availability Codes

Diat Special

kl

=

el

g

L:f:.

i

! \2 L3 .
1;2;:' 3 Inter-Process / Inter-Machine Communica-
L .
e tion

)

o As most of the modules to date have been written under UNIX 2 heavy use has
:') been made of the UNIX IPC (Inter-Process Communication) facilities(1]. One
;;:igp advantage of using these facilities is that under UNIX no distinction needs to be
.:':Q made between local processes and remote processes, where a process runs (or in
::Q’ this case, which machine a module is located on) can be completely transparent
T to the user. As a matter of fact this can even allow for a simple fault tolerant
- mechanism to be built into the system — if a host goes down, then the modules
.'..'c which were running on that host can be started up automatically on other hosts.
q:l:; Of course, the performance of the system will go do in situations like this, but
‘;‘,.:c the user will not need to be aware of such things.
‘:::o When first implementing the IPC code in the simulation modules, there
Ony was a very tight link between the IPC routines and the modules themselves.
" However, upon further study is was decided that each module should be started
::', % up along with a sister process which handles all of its outgoing communication
.:: . routing. Each process is then started up in one of two ways: Manually, from a
s terminal, mostly for testing purposes, or automatically by the Simulation Server
!t: ! which runs on each machine.
0 Currently all modules are started manually, however, a simulation server has
e been implemented, and is currently being tested.

;:::0
;:::: 3.1 Simulation Server

*
.;::: Each host participating in the simulation has a “simulation server.® The simu-
A lation server listens to the network for connections from other systems, or from

)) other modules on the same system. Upon receiving a connection, the server
.",‘;il routes the data to the appropriate module. If the module is not currently being
:"\:. executed, the server starts the module.
cf::. A module sends its output to another module through its sister IPC process.
i A sister process is used because it allows the modules to be linked and tested
A most easily: When all of the modules reside on one host they are started up
@ with simple UNIX pipes between them. The sister processes interact with the
i modules through pipes also, but have the capability for opening connections to
H“: simulation servers on other hosts.

::I': It is very important to note that there is a fixed direction in which all
"'n::‘ messages flow. Once modules are linked together, messages flow only in one
_:;Q direction. At the moment, it is not possible to dynamically add a new module
®.: to the simulation — if a module may even possibly be used, it should be specified
ey when the simulation is started. The module can be turned on or off by use of a
i:o"' command such as the ones described in the next section.
:::.‘ 3UNIX is o trademark of AT&T Bell Laborstories.

.l

:‘:?4

0 3
) B

!

t'."

8

A

Lot

M PO RN] [» RO O OO NAD 1 X3

DACIIEI A A NONINSORDNAE AN P AP N\

Hardware / Software Architecture of the MRMS Simulation

& BRI

Collison Avoidance Display
Subsystem

Control Panel
+..|Control System Subsystem

b 35 SERVER ’@

Machine A Machine B
7/

SESERVER

Totelets
S
ol

e MRMS Architecture: Simulation {VS:021887a)

Figure 1: Hardware and Software Architecture of Simulation System

-

]

Tyt L}),
S N e

3

b

K
&
::l Figure 1 shows both the hardware and software architecture of the simulation
,:‘ system.

. 4 Appendix A: Simulation Data Formats

o0

;:’ There are many different kinds of data which are currently sent from module
|: to module, and there will be many more. The following data format provides a
ot standard which can be easily extended as new data formats are needed. Each
: message has the following mandatory fields:
:’: Sender Recipient Command [Variables)

My

!: Each of SENDER, RECIPIENT, and COMMAND is an integer between 0 and
:'. 216 — 1. Every module is assigned a unique number.

1

3

L 4.1 Initialization Data

0
:: The first message sent to any module is a reset instruction. This instruction
0 has the following format:

:' 0 0 0 Xmin Ymin Zmin Xamax Ymax Zmax

.0
’ The two leading seros imply that it is a broadcast message {from 0, or the
:‘,f simulation controller, to 0, which is a pseudonym for everyone), and the third
a sero implies that it is a reset command.

" The reset command has six mandatory variables, which define the two cor-
“ ners (FLL and the RUR corners) of a box which contains the simulation universe.
L If a module ever receives an initialisation command, the algorithm should

be reset to its pristine state. .

"
Y
" 4.2 Operational Data
:: The following data formats are used when sending operating commands and
% the appropriate data through the system. In the table below the Sender and

Recipient fields are omitted, only the Command and variable fields are given.
o N.B. The command numbers are specific only to a module, though for ease
g of programming it may be simplest to assign unique numbers to each command,
v regardless of module. The commands below apply solely to the display module.
)
:: 1 ViewX VievY ViewZ TovardsX TowardsY TowardsZ
2 Fov

N 10 BasePos BaseRot Joti Jnt2 Jnt3
:'- 11 Obs_Num ObsFf1X ObePf1lY ObsF£1Z ObsRurX ObsRurY ObsRurZ
. 12 Object_Nuaber ObjX ObjY ObjZ
N 13 Object_Number_To_Attach_Viewpoint_To
' 8

e T e e e
- W o

S

a
4

N AP {) ') . ALY '
iL\ngxlsr'?}! "”"."v" .)"'i'g!|'.‘\‘q‘ti.,l‘$".t“,_0‘“0';_*' T ,.,t‘ M ’.?“‘e.

M)
K

Iy

A

a .

: 5 Appendix B: Sample Module

E:‘ The following is the code for a simple linear interpolator used in lieu of a control
: system in the original (circa May 86) MRMS demonstration.

t

N #ifndef lint

4 static char sccsid{] = "0(#)smooth.c U of Md *SRC* VS 21-May-1986";
> #endif

" #include <stdio.b>

o #include "mrms.h"

.;— #define ME CONTROL_8YS /+Control Sys Module Numbers/
()

L)

:' /+ This module takes the place of a control system by performing simple
o s linear interpolation betvween specified positions of the MRMS.
Iy .

- . Velu Sinha

) ./

l

l

" main()

Y «

o float v[6);

. f1loat ov(B];

" float 41, d2;

"] int flag:

i iat x;

" float sign, step;

. float diff;

. int Froa, To, Command;

" int bhavept=0;

W

‘

:: vhile(scanf("%d %d %d",.&From, &To, &Command) == 3){

l‘ /.

1)

Iy ¢ Read Froa, To, and Command fields...

e s/

1Y)

o 12(To &k To != ME){

: /®

. ¢ If the message is not for us, and is not O (the reset message),
: then

\ ¢ rebroadcast it.

e o/

..I.

::. printf£("%d %4 %4 ", Froa, To, Command);

]

i

4 o

)

.

. OSBANA]

DU MO OO S O MO OO O AT St i 4 REGOE AOAAN ¥ HRANAAL
ST A N A 'J‘.-’,‘,s A 13:’1 Bl RN AN, N l‘i‘zh‘t}‘v’,}p ?'i:'ﬁ“l"“if‘l."'r.f" N

while((x=getchar())!='\n"') putchar(x);
continue;
/*
¢ Go and wait for the next message...
s/
} /* closing the if(To && ... statement */
/e
s 0K, well, this message IS for us...
o/
switch(Command){
/s
¢ Let us figure out what command it is...
o/
case O:
/*
s RESET...
./
d1=d2=v[0]=v[1]=v[2]=v[3]=v[4] = 0.0;
flag = O;
bavept = O;
[*
¢ Pass the message on...
./
printf("%d %d %d %f %f %f %d %f %L %f Af\n",
NE, DISPLAY, NOVE_MRMS,
d1, d2, v[0], flag, v(1], v([2], v(3]. v[4]):
break;
/*
» This one means that ve interpolate...
o/
case 10:
scanf ("%f %f If %4 %7 %f %f Af\n",
&d1, &42, &v[0], &flag, &v[i], &v[2), &v[3],
&v(d]);
/e
s Ve don’'t knov hov to handle this, yet...
o/

12(21ag == -1){
printf ("%d %d %2 0. 0. 0. -1 0. 0. 0. 0.\n",
NE. DISPLAY, NOVE_MRNS);
exit(0);
} /e it o/

/*

et
1,(’,!. * Save a copy for interpolation purposes...
e ./

o for(x=0; x<5; x++)

b ovix]=v([x];

:o:.: /*

'::"! + If I have nothing to interpolate vith, then pass this on.

e s/

, if ('havept){

e printf("%d %d %d Xf %f %2 %d Xt %f AL Af\n",
e ME, DISPLAY, NOVE_MRNS,

BN a1, d2, v{[0], flag, v[1), v[2], v[3],
Hie vial);

MK havept=1;

L break;

9 Y /e if o/

;',:'0: /e

DN s QOtherwise, Look for the first value which has changed, that is the
".»'.’ value

Lo s to be interpolated.

y ./

\:"c' for(x=0; x<5; x++)

oty if(abs (v[x] - ov[x]) > .02) break:

o /s

) s If this bhappens (ie, if this new point is far emough away to make
et *» a difference...

) Y

NN if(x 1= B) {

"‘l ditf = v[x] - ov[x]);

’.’..' 1’(! == 0)

WY step = 1.0;

ol else

i step = 0.2;

t‘:‘!‘ sign=1;

AN
oty 11(diff < 0) stepe=(sign = (-1));

.-’ /.
;":‘:i e ... calculate interval, and interpolate...

iy o/
X tor(; signeovix)l<esignev(z); ov(x] += step)

¢

T T IR LE [\ AR W) (Ol o] fl
gt d “"e,"-‘ Vot AT U AN s

printf ("%d %d %d %f %f %f %d %f %L %f
%f\n",
ME, DISPLAY, MOVE_RMS,
d1, d2, ov[0], flag. ov(1],
ov[2], ov[3], ov[4]);
} /e it o/

} /s switch s/
} /* vwhile #/
} /* main s/

6 Appendix C: Users guide to starting a dis-
tributed simulation

To start a MRMS :..nulation, login to the Iris, and issue a command of the
following format...

simulate MACH {data source)} [MACH module ...] | dsply_prog
or
rsh MACH data source | rsh MACH module | rsh MACH module | dsply_prog

Where MACH is any one of the valid hostnames, and data source is a pro-
gram which creates the data (can be of the form cat filename if the data is
precomputed and stored in a file). Module is the location of the module in the
filesystem of the specified host. There may be any number of MACH module
statements.

References

(1] Samuel J. Leffler, Robert S. Fabry, and William N. Joy. A 4.3BSD Inter-
process Communication Primer. Computer Systems Research Group, De-
partment of EE & CS, University of California, Berkeley, December 1985.
Available on ENEEVAX in /usr/doc/ipec.

(2] Velu Sinha. Architecture of MRMS Simulation: Lisp Machine Interface. In-
telligent Servosystem Laboratory, Systems Research Center, The University
of Maryland, College Park, MD, 1987. In Prep’qntion.

(3] Velu Sinha. The Mobile Remote Manipulator System Simulator. Intelli-
gent Servosystem Laboratory, Systems Research Center, The University of
Maryland, College Park, MD, December 1986.

A O AN INASHONONG NSRRGSR A GG s NI
ottt tatedad, Nt '-f-".e".l".O".o,',s.,-'*:"*-fh'?*,-' Lttt bl 0

’

O - TE W w bdan e d ——
ol
I(
2
¢

-
DTS o e N L L -

PR e S i

W
>
OQ

™
N

.'"“J’

N,

o4 O [| . | L L o o . o . o . ' o .
R R R AN KN XN URN '\n" O 0T TG T T B Sy s Mo 3
e e oy 'o,»' Y "‘ .o. ‘. Vet ‘l,'l‘ i" Yot bt 9...’;, .",‘ oM |'l' 2% ‘.,‘ .‘ ':: . " .:c" :;“.l'
e Ty 0y vy '. N o) N s ottty ‘ oty T 'n' ' ' .

Tl '."“"' e ﬂ‘u Mt -.H.l- NG, h"c‘i:‘ o0 n‘ -'n"‘ \n‘:' " "\

At BAOMOUOLRL N 'nl XU u,-.a.o,t.'u o, 'l"tﬂ:
T e .4’. 4'- "I"‘d ‘, dn'r‘,:. .‘. |" “© "A,t ,.‘ '.":6 ‘ ' L

\J
REN I AN (BB o by, 0."$‘

